Detecting relationships between physiological variables using graphical models
نویسندگان
چکیده
In intensive care physiological variables of the critically ill are measured and recorded in short time intervals. The proper extraction and interpretation of the information contained in this flood of information can hardly be done by experience alone. Intelligent alarm systems are needed to provide suitable bedside decision support. So far there is no commonly accepted standard for detecting the actual clinical state from the patient record. We use the statistical methodology of graphical models based on partial correlations for detecting time-varying relationships between physiological variables. Graphical models provide information on the relationships among physiological variables that is helpful e.g. for variable selection. Separate analyses for different pathophysiological states show that distinct clinical states are characterized by distinct partial correlation structures. Hence, this technique can provide new insights into physiological mechanisms.
منابع مشابه
Detecting Relationships Between Physiological Variables
In intensive care physiological variables of the critically ill are measured and recorded in short time intervals. The proper extraction and interpretation of the information contained in this flood of information can hardly be done by experience alone. Intelligent alarm systems are needed to provide suitable bedside decision support. So far there is no commonly accepted standard for detecting ...
متن کاملA New Trust Model for B2C E-Commerce Based on 3D User Interfaces
Lack of trust is one of the key bottle necks in e-commerce development. Nowadays many advanced technologies are trying to address the trust issues in e-commerce. One among them suggests using suitable user interfaces. This paper investigates the functionality and capabilities of 3D graphical user interfaces in regard to trust building in the customers of next generation of B2C e-commerce websit...
متن کاملProbabilistic Graphical Models 1 Introduction
We have focused mainly on linear models for signals, in particular the subspace model x = Uθ, whereU is a n× k matrix and θ ∈ Rk is a vector of k < n parameters describing the signal x. The subspace model is useful because it reduces the number of parameters or degrees of freedom in the model from n to k. While applicable to many real-world problems, this is not the only way of modeling signals...
متن کاملJoint Structural Estimation of Multiple Graphical Models
Gaussian graphical models capture dependence relationships between random variables through the pattern of nonzero elements in the corresponding inverse covariance matrices. To date, there has been a large body of literature on both computational methods and analytical results on the estimation of a single graphical model. However, in many application domains, one has to estimate several relate...
متن کاملMixtures of Tree-Structured Probabilistic Graphical Models for Density Estimation in High Dimensional Spaces
Probabilistic graphical models reduce the number of parameters necessary to encode a joint probability distribution by exploiting independence relationships between variables. However, using those models is challenging when there are thousands of variables or more. First, both learning these models from a set of observations and exploiting them is computationally problematic. Second, the number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. AMIA Symposium
دوره شماره
صفحات -
تاریخ انتشار 2002